Explaining Machine Learning Predictions: State-of-the-art, Challenges, Opportunities

Sameer Singh

CPAIOR 2021

Master Class

Julius Adebayo MIT

Hima Lakkaraju Harvard University

Slides and Video: explainml-tutorial.github.io

[Weller 2017]

Motivation

Machine Learning is EVERYWHERE!!

this week's bestselling models

6	Cathon	Cases

Canon PowerShot	Canon PowerShot	Canon PowerShot	<u>Canon PowerShot</u>
A495 10.0 MP	A3000IS 10 MP	ELPH 300 HS 12	S95 10 MP Digital
Digital Camera	Digital Camera	MP CMOS Digital	Camera with 3.8x
with 3.3x Optical	with 4x Optical	Camera with Full	Wide Angle
Zoom and 2.5-	Image Stabilized	1080p HD Video	Optical Image
Inch LCD (Blue)	Zoom and 2.7-	(Black)	Stabilized Zoom
	Inch LCD		and 3.0-Inch inch
			LCD

ISIN APPROVED

O THE

CRAWDAD

3

Model understanding is absolutely critical in several domains -particularly those involving *high stakes decisions*!

Achieving Model Understanding

Take 1: Build *inherently interpretable* predictive models

Achieving Model Understanding

Take 2: *Explain* pre-built models *in a post-hoc manner*

[Cireșan et. al. 2012, Caruana et. al. 2006, Frosst et. al. 2017, Stewart 2020]

Inherently Interpretable Models vs. Post hoc Explanations

In *certain* settings, *accuracy-interpretability trade offs* may exist.

Inherently Interpretable Models vs. Post hoc Explanations

If you *can build* an interpretable model which is also adequately accurate for your setting, DO IT!

Otherwise, *post hoc explanations* come to the rescue!

This tutorial will focus on post hoc explanations!

What is an Explanation?

What is an Explanation?

Definition: Interpretable description of the model behavior

What is an Explanation?

Definition: Interpretable description of the model behavior

Local versus Global Explanations

Global explanation may be too complicated

Local versus Global Explanations

Global explanation may be too complicated

Local versus Global Explanations

Global explanation may be too complicated

Definition: Interpretable description of the model behavior *in a target neighborhood*.

Local Explanations

Definition: Interpretable description of the model behavior *in a target neighborhood*.

Local Explanations vs. Global Explanations

Explain individual predictions

Help unearth biases in the *local neighborhood* of a given instance

Help vet if individual predictions are being made for the right reasons Explain complete behavior of the model

Help shed light on *big picture biases* affecting larger subgroups

Help vet if the model, at a high level, is suitable for deployment

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Approaches for Post hoc Explainability

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

Being Model-Agnostic...

No access to the internal structure...

Not restricted to specific models

Practically easy: not tied to PyTorch, Tflow, etc.

Study models that you don't have access to!

LIME: Sparse, Linear Explanations

Identify the important dimensions, and present their relative importance

LIME Example - Images

[Ribeiro et al. 2016]

Predict Wolf vs Husky

Predict Wolf vs Husky

	RE	
Predicted: wolf	Predicted: husky True: husky	Predicted: wolf
Predicted: wolf True: husky	Predicted: husky True: husky	Predicted: wolf True: wolf

We've built a great snow detector...

SHAP: Shapley Values as Importance

Marginal contribution of each feature towards the prediction, averaged over all possible permutations.

Fairly attributes the prediction to all the features.

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

[Ribeiro et al. 2018]

Anchors: Sufficient Conditions

Identify the conditions under which the classifier has the same prediction

Salary Prediction

Feature	Value	
Age	$37 < \text{Age} \le 48$	
Workclass	Private	
Education	\leq High School	
Marital Status	Married	
Occupation	Craft-repair	
Relationship	Husband	
Race	Black	
Sex	Male	
Capital Gain	0	
Capital Loss	0	
Hours per week	≤ 40	
Country	United States	

Anchors

IF Education < High School Then Predict Salary < 50K

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

Saliency Map Overview

Input

Saliency Map Overview

What parts of the input are most relevant for the model's prediction: 'Junco Bird'?

Saliency Map Overview

What parts of the input are most relevant for the model's prediction: 'Junco Bird'?

- Feature Attribution
- Saliency Map'
- Heatmap

Input-Gradient

Input-Gradient

SmoothGrad

Integrated Gradients

Recap

Recap

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

Prototype Approaches

Explain a model with synthetic or natural input **'examples'**.

Prototype Approaches

Explain a model with synthetic or natural input 'examples'.

Insights

- What kind of input is the model most likely to misclassify?
- Which training samples are **mislabelled**?
- Which input **maximally activates** an intermediate neuron?

Training Point Ranking via Influence Functions

Which training points have the most 'influence' on test input's loss?

Training Point Ranking via Influence Functions

Which training points have the most 'influence' on test input's loss?

Koh & Liang 2017 ; Yeh et. al. 2018 ; Pruthi et. al. 2020

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

Counterfactual Explanations

It's important to provide recourse to affected individuals.

Counterfactual Explanations

What features need to be changed and by how much to flip a model's prediction ? (i.e., to reverse an unfavorable outcome).

Counterfactual Explanations

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

Counterfactual Explanations: Intuition

Proposed solutions differ on:

How to choose among candidate counterfactuals?

Take 1: Minimum Distance Counterfactuals

Person 1: If your LSAT was 34.0, you would have an average predicted score (0).

Person 2: If your LSAT was 32.4, you would have an average predicted score (0).

Person 3: If your LSAT was 33.5, and you were 'white', you would have an average predicted score (0).

Person 4: If your LSAT was 35.8, and you were 'white', you would have an average predicted score (0).

Person 5: If your LSAT was 34.9, you would have an average predicted score (0).

Not feasible to act upon these features!

Take 2: Feasible and Least Cost Counterfactuals

Features to Change	Current Values		Required Values
n_credit_cards	5	\rightarrow	3
current_debt	\$3,250	\rightarrow	\$1,000
has_savings_account has_retirement_account	FALSE FALSE	\rightarrow \rightarrow	TRUE TRUE

Approaches for Post hoc Explainability

Local Explanations

- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations

- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based

Global Explanations

Explain the complete behavior of a given (black box) model
Provide a *bird's eye view* of model behavior

- Help detect *big picture* model biases persistent across larger subgroups of the population
 - Impractical to manually inspect local explanations of several instances to ascertain big picture biases!
- Global explanations are complementary to local explanations

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Evaluation of Post hoc Explanations

How we evaluate explanations?

Evaluating Post hoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging

Evaluating Post hoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging

• Deletion: remove important features and see what happens..

% of Pixels *deleted*

• Insertion: add important features and see what happens..

• Insertion: add important features and see what happens..

How important are selected features?

• Insertion: add important features and see what happens..

How important are selected features?

• Insertion: add important features and see what happens..

How important are selected features?

• Insertion: add important features and see what happens..

Predicting Behavior ("Simulation")

Predicting Behavior ("Simulation")

Evaluating Post hoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging

1. Detecting Problems in Classifiers

[Ribeiro et al. 2016]

2. Comparing Classifiers

3. Finding Errors in Training Data

• Prototypical Explanations: important instances from training data

Evaluating Posthoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging

Human-AI Collaboration

- Are Explanations Useful for Making Decisions?
 - For tasks where the algorithms are not reliable by themselves

Evaluating Posthoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging

Limitations of Evaluating Explanations

• Evaluation setup is often very easy/simple (or unrealistic)

- \circ E.g. "bugs" are obvious artifacts, classifiers are different from each other
- Instances/perturbations create out-of-domain points
- Sometimes flawed
 - E.g. is model explanation same as human explanation?
- Automated metrics can be *optimized*
- User studies are not consistent
 - Affected by choice of: UI, phrasing, visualization, population, incentives, ...
 - \circ ML researchers are not trained for this \overleftrightarrow
- Conclusions are difficult to generalize

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Limits of Post hoc Explanations

Limitations

• Faithfulness/Fidelity

Some explanation methods do not '*reflect*' the underlying model.

• Fragility

Post-hoc explanations can be easily manipulated.

Stability

Slight changes to inputs can cause large changes in explanations.

• Useful in practice?

Unclear if a data scientist (ML engineer)/end-user can use explanations to isolate errors, improve 'trust' or simulate the model.

Limitations

• Faithfulness/Fidelity

Some explanation methods do not *'reflect'* the underlying model.

Do Explanations Capture Model-based Discriminative Signals?

Do Explanations Capture Model-based Discriminative Signals?

Do Explanations Capture Model-based Discriminative Signals?

Sensitivity to Model Parameters: if the parameter settings change, the explanations should change.

Sensitivity to Model Parameters: if the parameter settings change, the explanations should change.

Parameter Setting 1

Parameter Setting 2

Adebayo et. al. 2018

Sensitivity to Model Parameters: if the parameter settings change, the explanations should change.

Sensitivity to Model Parameters: if the parameter settings change, the explanations should change.

• Randomize (re-initialize) model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

• Randomize (re-initialize) model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

• Randomize (re-initialize) model parameters starting from top layer all the way to the input.

• Randomize (re-initialize) model parameters starting from top layer all the way to the input.

• Randomize (re-initialize) model parameters starting from top layer all the way to the input.

• Randomize (re-initialize) model parameters starting from top layer all the way to the input.

Guided BackProp is invariant to the higher level weights.

'Modified backprop approaches' are invariant

Method that compute relevance via modified backpropagation and performance positive aggregation along the way are invariant to higher layers.

	image	original	fc3	conv5_3	conv4_1	conv2_1	conv1_1
GuidedBP	9	C		P	P	A.M.	A CAR
RectGrad	-	0	3	1 1 1	* *	S. Rige "	* *
DTD		0	Q	2	A	C.	2
LRP α1β0		0		St.	Star Star	や	C
LRP α2 β1		0				A.S.	-(-) 1457
PatternAttr.		10	Q	1			-
DeepLIFT Resc.		in the second				f: Mar	A CAR
Gradient			-				

Limitations

• Faithfulness/Fidelity

Some explanation methods do not '*reflect*' the underlying model.

• Fragility

Post-hoc explanations can be easily manipulated.

Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image

Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image

Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image

Manipulated Image

Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image

Manipulated Image

Scaffolding Attack on LIME & SHAP

Scaffolding attack used to hide classifier dependence on gender.

Limitations

Faithfulness/Fidelity

Some explanations do not reflect the underlying model.

Fragility Post-hoc explanations can be easily manipulated.

Stability

■ Slight changes to inputs can cause large changes in explanations.

Limitations: Stability

Post-hoc explanations can be unstable to small, **non-adversarial**, perturbations to the input.

Limitations: Stability

Post-hoc explanations can be unstable to small, **non-adversarial**, perturbations to the input.

Limitations: Stability

- Perturbation approaches like LIME can be unstable.
- <u>Yeh et. al. (2019</u>) analytically derive bounds on explanations sensitive for certain popular methods and propose stable variants.

Estimate for 100 tests for an MNIST Model.

Alvarez et. al. 2018.

Sensitivity to Hyperparameters

Explanations can be highly sensitive to hyperparameters such as **random seed**, number of perturbations, patch size, etc.

Limitations

Faithfulness/Fidelity

Some explanations do not reflect the underlying model.

Fragility Post-hoc explanations can be easily manipulated.

Stability

Slight changes to inputs can cause large changes in explanations.

• Useful in practice?

Unclear if a data scientist (ML engineer)/lay person use explanations to isolate errors, improve 'trust', and 'simulatability' in practice?

Model Debugging: Spurious Signals

Explanations with perfect fidelity can still mislead

In a bail adjudication task, **misleading** high-fidelity explanations improve end-user (domain experts) trust.

True Classifier relies on race

If Race ≠ African American: If Prior-Felony = Yes and Crime-Status = Active, then Risky If Prior-Convictions = 0, then Not Risky

If Race = African American: If Pays-rent = No and Gender = Male, then Risky If Lives-with-Partner = No and College = No, then Risky If Age ≥35 and Has-Kids = Yes, then Not Risky If Wages ≥70K, then Not Risky

Default: Not Risky

Explanations with perfect fidelity can still mislead

In a bail adjudication task, **misleading** high-fidelity explanations improve end-user (domain experts) trust.

True Classifier relies on race

If Race \neq African American:

If Prior-Felony = Yes and Crime-Status = Active, then Risky If Prior-Convictions = 0, then Not Risky

If Race = African American: If Pays-rent = No and Gender = Male, then Risky If Lives-with-Partner = No and College = No, then Risky If Age ≥35 and Has-Kids = Yes, then Not Risky If Wages ≥70K, then Not Risky

Default: Not Risky

High fidelity 'misleading' explanation

If Current-Offense = Felony:

If Prior-FTA = Yes and Prior-Arrests \geq 1, then Risky If Crime-Status = Active and Owns-House = No and Has-Kids = No, then Risky If Prior-Convictions = 0 and College = Yes and Owns-House = Yes, then Not Risky

If Current-Offense = Misdemeanor and Prior-Arrests > 1: If Prior-Jail-Incarcerations = Yes, then Risky If Has-Kids = Yes and Married = Yes and Owns-House = Yes, then Not Risky If Lives-with-Partner = Yes and College = Yes and Pays-Rent = Yes, then Not Risky

If Current-Offense = Misdemeanor and Prior-Arrests ≤ 1 :

If Has-Kids = No and Owns-House = No and Prior-Jail-Incarcerations = Yes, then Risky If Age \geq 50 and Has-Kids = Yes and Prior-FTA = No, then Not Risky

Default: Not Risky

Difficulty using explanations for debugging

In a housing price prediction task, Amazon mechanical turkers are unable to use linear model coefficients to diagnose model mistakes.

Attention: This apartment has an unusual combination of # Bedrooms and # Bathrooms.

Please take the unusual configuration of this apartment into consideration when making predictions.

Limitations

• Faithfulness/Fidelity

Some explanation methods do not '*reflect*' the underlying model.

• Fragility

Post-hoc explanations can be easily manipulated.

Stability

Slight changes to inputs can cause large changes in explanations.

• Useful in practice?

Unclear if a data scientist (ML engineer)/end-user can use explanations to isolate errors, improve 'trust' or simulate the model.

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Future of Post hoc Explainability

Emerging Topics in Explainability Research

Future of Post hoc Explainability

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations **Other Emerging Directions**

Post hoc Explainability Beyond Classification

Theoretical Analysis of Post hoc Explanation Methods

Rigorous Evaluation of the Utility of Post hoc Explanations Intersections with Differential Privacy

Intersections with Fairness

Future of Post hoc Explainability

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations **Other Emerging Directions**

Post hoc Explainability Beyond Classification

Theoretical Analysis of Post hoc Explanation Methods

Rigorous Evaluation of the Utility of Post hoc Explanations Intersections with Differential Privacy

Intersections with Fairness

Methods for More Reliable Post hoc Explanations

Post hoc explanations have several limitations: not faithful to the underlying model, unstable, fragile

Identifying vulnerabilities in existing post hoc explanation methods and proposing approaches to address these vulnerabilities is a critical research direction going forward!

Future of Post hoc Explainability

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations **Other Emerging Directions**

Post hoc Explainability Beyond Classification

Theoretical Analysis of Post hoc Explanation Methods

Rigorous Evaluation of the Utility of Post hoc Explanations Intersections with Differential Privacy

Intersections with Fairness

Theoretical Analysis of Post hoc Explanation Methods

• Theoretical analysis of LIME

Theoretical analysis shedding light on the fidelity, stability, and fragility of post hoc explanation methods can be extremely valuable to the progress of the field!

model

• Local error is bounded away from zero with high probability

Future of Post hoc Explainability

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations **Other Emerging Directions**

Post hoc Explainability Beyond Classification

Theoretical Analysis of Post hoc Explanation Methods

Intersections with Differential Privacy

Rigorous Evaluation of the Utility of Post hoc Explanations

Intersections with Fairness

Rigorous Evaluation of the Utility of Post hoc Explanations

Rigorous user studies and evaluations to ascertain the utility of different post hoc explanation methods in various contexts is extremely critical for the progress of the field!

them -- "Participants trusted the tools because of their visualizations and their public availability"

Future of Post hoc Explainability

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations

Other Emerging Directions

Post hoc Explainability **Beyond Classification**

Theoretical Analysis of Post hoc Explanation Methods

Rigorous Evaluation of the Utility of Post hoc Explanations

Intersections with Differential Privacy

Intersections with Fairness

Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Summary of Tutorial

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability

Parting Thoughts...

When introducing a new explanation method:

- Who are the target end users that the method will help?
- A clear statement about what capability and/or insight the method aims to provide to its end users
- Careful analysis and exposition of the limitations and vulnerabilities of the proposed method
- Rigorous user studies (preferably with actual end users) to evaluate if the method is achieving the desired effect
- Use quantitative metrics (and not anecdotal evidence) to make claims about explainability

Thank You!

Sameer Singh UC Irvine

sameeersingh.org sameer@uci.edu @sameer_

Julius Adebayo MIT

Hima Lakkaraju Harvard University

Slides and Video: explainml-tutorial.github.io