Explaining Machine Learning Predictions: State-of-the-art, Challenges, Opportunities

Sameer Singh

UCI nlp
Hima Lakkaraju
Harvard University

Julius Adebayo
MIT

Slides and Video: explainml-tutorial.github.io
Motivation

Machine Learning is EVERYWHERE!!
Motivation

Model understanding is absolutely critical in several domains -- particularly those involving *high stakes decisions*!
Motivation: Why Model Understanding?

This model is relying on incorrect features to make its prediction!! Let me fix the model.

Model understanding facilitates debugging.
Motivation: Why Model Understanding?

Model understanding facilitates bias detection.

This prediction is biased. Race and gender are being used to make the prediction!!

Defendant Details

- Predictive Model
- Race
- Crimes
- Gender
- Prediction = Risky to Release

[Larson et. al. 2016]
Motivation: Why Model Understanding?

Model understanding helps provide recourse to individuals who are adversely affected by model predictions.

Loan Applicant Details

I have some means for recourse. Let me go and work on my promotion and pay my bills on time.

Predictive Model

Prediction = Denied Loan

Loan Applicant
Motivation: Why Model Understanding?

Model understanding helps assess if and when to trust model predictions when making decisions.
Motivation: Why Model Understanding?

This model is using irrelevant features when predicting on female subpopulation. This cannot be approved!

Model understanding allows us to vet models to determine if they are suitable for deployment in real world.

Patient Data

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Age</th>
<th>Fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Female</td>
<td>32</td>
<td>No</td>
</tr>
<tr>
<td>32</td>
<td>Male</td>
<td>31</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Predictive Model

- If gender = female,
 - if ID_num > 200, then sick
- If gender = male,
 - if cold = true and cough = true, then sick

Model Understanding

- Sick
- Sick
- ...
- Healthy
- Healthy
- Sick
Achieving Model Understanding

Take 1: Build *inherently interpretable* predictive models

If \((age = 18 - 20)\) and \((sex = male)\) then predict *yes*
else if \((age = 21 - 23)\) and \((priors = 2 - 3)\) then predict *yes*
else if \((priors > 3)\) then predict *yes*
else predict *no*
Achieving Model Understanding

Take 2: *Explain* pre-built models *in a post-hoc manner*

if \(\text{age} = 18 - 20 \) and \(\text{sex} = \text{male} \) then predict yes
else if \(\text{age} = 21 - 23 \) and \(\text{priors} = 2 - 3 \) then predict yes
else if \(\text{priors} > 3 \) then predict yes
else predict no

[Ribeiro et. al. 2016, 2018; Lakkaraju et. al. 2019]
Inherently Interpretable Models vs. Post hoc Explanations

In certain settings, accuracy-interpretability trade offs may exist.

Example

[Cireşan et. al. 2012, Caruana et. al. 2006, Frosst et. al. 2017, Stewart 2020]
Inherently Interpretable Models vs. Post hoc Explanations

If you *can build* an interpretable model which is also adequately accurate for your setting, DO IT!

Otherwise, *post hoc explanations* come to the rescue!

This tutorial will focus on post hoc explanations!
What is an Explanation?
What is an Explanation?

Definition: Interpretable description of the model behavior
What is an Explanation?

Definition: Interpretable description of the model behavior

- Send all the model parameters θ?
- Send many example predictions?
- Summarize with a program/rule/tree
- Select most important features/points
- Describe how to *flip* the model prediction
- ...

[Lipton 2016]
Local versus Global Explanations

Global explanation may be too complicated
Local versus Global Explanations

Global explanation may be too complicated
Local versus Global Explanations

Global explanation may be too complicated

Definition: Interpretable description of the model behavior in a target neighborhood.
Local Explanations

Definition: Interpretable description of the model behavior in a target neighborhood.

- Send many example predictions?
- Summarize with a program/rule/tree
- Select most important features/points
- Describe how to *flip* the model prediction
- ...

Classifier

[Diagram of Classifier and User Interaction]

User
Local Explanations vs. Global Explanations

- Explain individual predictions
- Help unearth biases in the local neighborhood of a given instance
- Help vet if individual predictions are being made for the right reasons
- Explain complete behavior of the model
- Help shed light on big picture biases affecting larger subgroups
- Help vet if the model, at a high level, is suitable for deployment
Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability
Tutorial on Post hoc Explanations

- **Approaches** for Post hoc Explainability
- **Evaluation** of Explanations
- **Limits** of Post hoc Explainability
- **Future** of Post hoc Explainability
Approaches for Post hoc Explainability
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Being Model-Agnostic...

No access to the internal structure...

- Not restricted to specific models
- Practically easy: not tied to PyTorch, Tflow, etc.
- Study models that you don’t have access to!
LIME: Sparse, Linear Explanations

Identify the important dimensions, and present their relative importance
LIME Example - Images

Perturbed Instances	P(Labrador)
Original Image | 0.92 |
P(labrador) = 0.21

LIME is quite customizable:
- How to perturb?
- Distance/similarity?
- How *local* you want it to be?
- How to express explanation

Locally weighted regression

Maybe to a fault?

Explaination

[Ribeiro et al. 2016]
Predict Wolf vs Husky

Only 1 mistake!
Predict Wolf vs Husky

We’ve built a great snow detector...
SHAP: Shapley Values as Importance

Marginal contribution of each feature towards the prediction, averaged over all possible permutations.

Fairly attributes the prediction to all the features.

\[
P(y) = 0.9 \
M(x_i, O) = 0.1 \
\]

\[
P(y) = 0.8 \
\]
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Anchors: Sufficient Conditions

[Ribeiro et al. 2018]

Identify the conditions under which the classifier has the same prediction
Salary Prediction

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>$37 \leq \text{Age} \leq 48$</td>
</tr>
<tr>
<td>Workclass</td>
<td>Private</td>
</tr>
<tr>
<td>Education</td>
<td>$\leq \text{High School}$</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Married</td>
</tr>
<tr>
<td>Occupation</td>
<td>Craft-repair</td>
</tr>
<tr>
<td>Relationship</td>
<td>Husband</td>
</tr>
<tr>
<td>Race</td>
<td>Black</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Capital Gain</td>
<td>0</td>
</tr>
<tr>
<td>Capital Loss</td>
<td>0</td>
</tr>
<tr>
<td>Hours per week</td>
<td>≤ 40</td>
</tr>
<tr>
<td>Country</td>
<td>United States</td>
</tr>
</tbody>
</table>

Salary

- 29% > $50K
- 71% ≤ $50K

LIME

- Capital Gain = 0
- Marital Status = Married
- Education ≤ High School
- Hours per week ≤ 40

If Education ≤ High School
Then Predict Salary ≤ 50K

Anchors
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
 - Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Saliency Map Overview

Input

Model

Predictions

Junco Bird
What parts of the input are most relevant for the model's prediction: ‘Junco Bird’?
What parts of the input are most relevant for the model's prediction: ‘Junco Bird’?

- Feature Attribution
- ‘Saliency Map’
- Heatmap
Input-Gradient

Input

Model

F_θ

Predictions

Junco Bird

Input-Gradient

$\nabla_x F_i(x)$

Logit

Input

Visualize as a heatmap

Baehrens et al. 2010; Simonyan et al. 2014.
Input-Gradient

Input

→

Model

F_θ

→

Predictions

Junco Bird

 Challenges

- Visually noisy & difficult to interpret.
- ‘Gradient saturation.’

Shrikumar et. al. 2017.

Input-Gradient

\[\nabla_x F_i(x) \]

Logit

Input

Baehrens et. al. 2010; Simonyan et. al. 2014.
SmoothGrad

\[\frac{1}{N} \sum_{i}^{N} \nabla_{(x+\epsilon)} F_i(x + \epsilon) \]

Gaussian noise

Average Input-gradient of ‘noisy’ inputs.

Smilkov et. al. 2017
Integrated Gradients

\[(x - \tilde{x}) \times \int_{\alpha=0}^{1} \frac{\partial F(\tilde{x} + \alpha \times (x - \tilde{x}))}{\partial x} \]

Path integral: ‘sum’ of interpolated gradients

Sundararajan et. al. 2017
Recap

Input

Model

Predictions

Junco Bird

LIME

SHAP
Recap

Input

Model

Predictions

Junco Bird
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Prototype Approaches

Explain a model with synthetic or natural input ‘examples’.
Prototype Approaches

Explain a model with synthetic or natural input ‘examples’.

Insights

• What kind of input is the model most likely to misclassify?

• Which training samples are mislabelled?

• Which input maximally activates an intermediate neuron?
Training Point Ranking via Influence Functions

Which training points have the most ‘influence’ on test input’s loss?

Koh & Liang 2017; Yeh et. al. 2018; Pruthi et. al. 2020
Training Point Ranking via Influence Functions

Which training points have the most ‘influence’ on test input’s loss?

Koh & Liang 2017; Yeh et. al. 2018; Pruthi et. al. 2020
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
 - Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Counterfactual Explanations

It’s important to provide recourse to affected individuals.

Counterfactual Explanations

What features need to be changed and by how much to flip a model’s prediction? (i.e., to reverse an unfavorable outcome).
Counterfactual Explanations

Predictive Model

\[f(x) \]

Loan Application

Deny Loan

Applicant

Counterfactual Generation Algorithm

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months
Counterfactual Explanations: Intuition

Proposed solutions differ on:

How to choose among candidate counterfactuals?
Take 1: Minimum Distance Counterfactuals

Person 1: If your LSAT was 34.0, you would have an average predicted score (0).

Person 2: If your LSAT was 32.4, you would have an average predicted score (0).

Person 3: If your LSAT was 33.5, and you were ‘white’, you would have an average predicted score (0).

Person 4: If your LSAT was 35.8, and you were ‘white’, you would have an average predicted score (0).

Person 5: If your LSAT was 34.9, you would have an average predicted score (0).

Not feasible to act upon these features!
Take 2: Feasible and Least Cost Counterfactuals

<table>
<thead>
<tr>
<th>Features to Change</th>
<th>Current Values</th>
<th>Required Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_credit_cards</td>
<td>5</td>
<td>→ 3</td>
</tr>
<tr>
<td>current_debt</td>
<td>$3,250</td>
<td>→ $1,000</td>
</tr>
<tr>
<td>has_savings_account</td>
<td>FALSE</td>
<td>→ TRUE</td>
</tr>
<tr>
<td>has_retirement_account</td>
<td>FALSE</td>
<td>→ TRUE</td>
</tr>
</tbody>
</table>
Approaches for Post hoc Explainability

Local Explanations
- Feature Importances
- Rule Based
- Saliency Maps
- Prototypes/Example Based
- Counterfactuals

Global Explanations
- Collection of Local Explanations
- Model Distillation
- Summaries of Counterfactuals
- Representation Based
Global Explanations

- Explain the **complete behavior** of a given (black box) model
 - Provide a *bird’s eye view* of model behavior

- Help detect **big picture model biases** persistent across larger subgroups of the population
 - Impractical to manually inspect local explanations of several instances to ascertain big picture biases!

- Global explanations are **complementary** to local explanations
Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability
Tutorial on Post hoc Explanations

- **Approaches** for Post hoc Explainability
- **Evaluation** of Explanations
- **Limits** of Post hoc Explainability
- **Future** of Post hoc Explainability
Evaluation of Post hoc Explanations
How we evaluate explanations?

- **Application-grounded Evaluation**
 - Real Humans
 - Real Tasks

- **Human-grounded Evaluation**
 - Real Humans
 - Simple Tasks

- **Functionally-grounded Evaluation**
 - No Real Humans
 - Proxy Tasks
Evaluating Post hoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging
Evaluating Post hoc Explanations

- Understand the Behavior
- Help make decisions
- Useful for Debugging
How important are selected features?

- **Deletion**: remove important features and see what happens.
How important are selected features?

- **Deletion**: remove important features and see what happens.
How important are selected features?

- **Deletion**: remove important features and see what happens..
How important are selected features?

- **Deletion**: remove important features and see what happens.
How important are selected features?

- **Deletion**: remove important features and see what happens..

![Graph showing prediction probability vs. percentage of pixels deleted.](image)
How important are selected features?

- **Deletion**: remove important features and see what happens.
How important are selected features?

• **Insertion**: add important features and see what happens..
How important are selected features?

- **Insertion**: add important features and see what happens.
How important are selected features?

- **Insertion**: add important features and see what happens..
How important are selected features?

• **Insertion**: add important features and see what happens.

![Graph showing prediction probability vs. percentage of pixels inserted.](image)
How important are selected features?

• **Insertion**: add important features and see what happens..
Predicting Behavior ("Simulation")

- Data
- Classifier
- Predictions & Explanations
- New Data
- Predictions
- Show to user
- User guesses what the classifier would do on new data
- Compare Accuracy

[Ribeiro et al. 2018, Hase and Bansal 2020]
Predicting Behavior ("Simulation")

(a) Step 1: Participants were asked to guess the model’s prediction and state their confidence.
Evaluating Post hoc Explanations

- Understand the Behavior
- Help make decisions
- Useful for Debugging
1. Detecting Problems in Classifiers

Question 1
Would you trust this model?
Did they say no?

Question 2
What is the classifier doing?
Did they get it right?
2. Comparing Classifiers

Question
Which algorithm is better?

Did they pick the right one?

[Ribeiro et al. 2016]
3. Finding Errors in Training Data

- **Prototypical Explanations**: important instances from training data

Training Data → Classifier → Explainer → Re-labels high-ranked instances

Were the added ones selected? Does the accuracy go up?
Evaluating Posthoc Explanations

Understand the Behavior

Help make decisions

Useful for Debugging
Human-AI Collaboration

- Are Explanations Useful for Making Decisions?
 - For tasks where the algorithms are not reliable by themselves

[Lai and Tan, 2019]
Evaluating Posthoc Explanations

- Understand the Behavior
- Help make decisions
- Useful for Debugging
Limitations of Evaluating Explanations

- Evaluation setup is often very easy/simple (or unrealistic)
 - E.g. “bugs” are obvious artifacts, classifiers are different from each other
 - Instances/perturbations create out-of-domain points
- Sometimes flawed
 - E.g. is model explanation same as human explanation?
- Automated metrics can be optimized
- User studies are not consistent
 - Affected by choice of: UI, phrasing, visualization, population, incentives, ...
 - ML researchers are not trained for this 😞
- Conclusions are difficult to generalize
Tutorial on Post hoc Explanations

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability
Tutorial on Post hoc Explanations

- Approaches for Post hoc Explainability
- Evaluation of Explanations
- Limits of Post hoc Explainability
- Future of Post hoc Explainability
Limits of Post hoc Explanations
Limitations

● Faithfulness/Fidelity
 ■ Some explanation methods do not ‘reflect’ the underlying model.

● Fragility
 ■ Post-hoc explanations can be easily manipulated.

● Stability
 ■ Slight changes to inputs can cause large changes in explanations.

● Useful in practice?
 ■ Unclear if a data scientist (ML engineer)/end-user can use explanations to isolate errors, improve ‘trust’ or simulate the model.
Limitations

● Faithfulness/Fidelity
 ■ Some explanation methods do not ‘reflect’ the underlying model.
Do Explanations Capture Model-based Discriminative Signals?

Input → Model F_θ → Predictions

Junco Bird
Do Explanations Capture Model-based Discriminative Signals?

Input

Model

Predictions

Junco Bird
Do Explanations Capture Model-based Discriminative Signals?

Does the model, indeed, rely on these input dimensions to determine the output?
Sanity Check for Faithfulness/Fidelity

- **Sensitivity to Model Parameters:** if the parameter settings change, the explanations should change.

Adebayo et. al. 2018
Sanity Check for Faithfulness/Fidelity

- **Sensitivity to Model Parameters:** if the parameter settings change, the explanations should change.

\[F_\theta \]

Parameter Setting 1

Parameter Setting 2

Adebayo et. al. 2018
Sanity Check for Faithfulness/Fidelity

- **Sensitivity to Model Parameters**: if the parameter settings change, the explanations should change.

Adebayo et. al. 2018
Sanity Check for Faithfulness/Fidelity

- **Sensitivity to Model Parameters:** if the parameter settings change, the explanations should change.

Adebayo et. al. 2018
Cascading Randomization Inception-V3

- **Randomize (re-initialize)** model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018
Cascading Randomization Inception-V3

- **Randomize (re-initialize)** model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018
Cascading Randomization Inception-V3

- **Randomize (re-initialize)** model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018
Cascading Randomization Inception-V3

- **Randomize (re-initialize)** model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et. al. 2018
Cascading Randomization Inception-V3

- **Randomize (re-initialize)** model parameters starting from top layer all the way to the input.

Guided BackProp Explanation Inception-V3 ImageNet

Adebayo et al. 2018
Cascading Randomization Inception-V3

● Randomize (re-initialize) model parameters starting from top layer all the way to the input.

Guided BackProp is invariant to the higher level weights.

Adebayo et. al. 2018
‘Modified backprop approaches’ are invariant

Method that compute relevance via modified backpropagation and performance positive aggregation along the way are invariant to higher layers.
Cascading Randomization Inception-V3

Adebayo et al. 2018
Limitations

● Faithfulness/Fidelity
 - Some explanation methods do not ‘reflect’ the underlying model.

● Fragility
 - Post-hoc explanations can be easily manipulated.
Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.
Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image
Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image

Manipulated Image

Dombrowski et al. 2019
Post-hoc Explanations are Fragile

Post-hoc explanations can be easily manipulated.

Original Image

Manipulated Image

Dombrowski et. al. 2019
Scaffolding Attack on LIME & SHAP

Scaffolding attack used to hide classifier dependence on gender.

Slack and Hilgard et. al. 2020
Limitations

● **Faithfulness/Fidelity**
 ■ Some explanations do not reflect the underlying model.

● **Fragility**
 ■ Post-hoc explanations can be easily manipulated.

● **Stability**
 ■ Slight changes to inputs can cause large changes in explanations.
Limitations: Stability

Post-hoc explanations can be unstable to small, non-adversarial, perturbations to the input.

Alvarez et. al. 2018.
Limitations: Stability

Post-hoc explanations can be unstable to small, non-adversarial, perturbations to the input.

\[\hat{L}(x_i) = \arg\max_{x_j \in B_e(x_i)} \frac{\|f(x_i) - f(x_j)\|_2}{\|x_i - x_j\|_2} \]

‘Local Lipschitz Constant’

Explanation function: LIME, SHAP, Gradient...etc.
Limitations: Stability

- Perturbation approaches like LIME can be unstable.

- Yeh et. al. (2019) analytically derive bounds on explanations sensitive for certain popular methods and propose stable variants.

Estimate for 100 tests for an MNIST Model.

Alvarez et. al. 2018.
Explanations can be highly sensitive to hyperparameters such as random seed, number of perturbations, patch size, etc.
Limitations

● Faithfulness/Fidelity
 ■ Some explanations do not reflect the underlying model.

● Fragility
 ■ Post-hoc explanations can be easily manipulated.

● Stability
 ■ Slight changes to inputs can cause large changes in explanations.

● Useful in practice?
 ■ Unclear if a data scientist (ML engineer)/lay person use explanations to isolate errors, improve ‘trust’, and ‘simulatability’ in practice?
Model Debugging: Spurious Signals

True Label: Siberian Husky

Predictions

- **LIME:**
 - Relying on snow background

Riberio et. al. 2017.
Explanations with perfect fidelity can still mislead

In a bail adjudication task, misleading high-fidelity explanations improve end-user (domain experts) trust.

True Classifier relies on race

If Race ≠ African American:
 If Prior-Felony = Yes and Crime-Status = Active, then Risky
 If Prior-Convictions = 0, then Not Risky

If Race = African American:
 If Pays-rent = No and Gender = Male, then Risky
 If Lives-with-Partner = No and College = No, then Risky
 If Age ≥ 35 and Has-Kids = Yes, then Not Risky
 If Wages ≥ 70K, then Not Risky

Default: Not Risky
Explanations with perfect fidelity can still mislead.

In a bail adjudication task, **misleading** high-fidelity explanations improve end-user (domain experts) trust.

True Classifier relies on race

<table>
<thead>
<tr>
<th>Condition</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race ≠ African American:</td>
<td></td>
</tr>
<tr>
<td>If Prior-Felony = Yes and Crime>Status = Active, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Prior-Convictions = 0, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>If Race = African American:</td>
<td></td>
</tr>
<tr>
<td>If Pays-rent = No and Gender = Male, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Lives-with-Partner = No and College = No, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Age ≥ 35 and Has-Kids = Yes, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>If Wages ≥ 70K, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>Default: Not Risky</td>
<td></td>
</tr>
</tbody>
</table>

High fidelity ‘misleading’ explanation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Current-Offense = Felony:</td>
<td></td>
</tr>
<tr>
<td>If Prior-FTA = Yes and Prior-Arrests ≥ 1, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Crime>Status = Active and Owns-House = No and Has-Kids = No, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Prior-Convictions = 0 and College = Yes and Owns-House = Yes, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>If Current-Offense = Misdemeanor and Prior-Arrests > 1:</td>
<td></td>
</tr>
<tr>
<td>If Prior-Jail-Incarcerations = Yes, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Has-Kids = Yes and Married = Yes and Owns-House = Yes, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>If Lives-with-Partner = Yes and College = Yes and Pays-Rent = Yes, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>If Current-Offense = Misdemeanor and Prior-Arrests ≤ 1:</td>
<td></td>
</tr>
<tr>
<td>If Has-Kids = No and Owns-House = No and Prior-Jail-Incarcerations = Yes, then Risky</td>
<td></td>
</tr>
<tr>
<td>If Age ≥ 50 and Has-Kids = Yes and Prior-FTA = No, then Not Risky</td>
<td></td>
</tr>
<tr>
<td>Default: Not Risky</td>
<td></td>
</tr>
</tbody>
</table>
Difficulty using explanations for debugging

In a housing price prediction task, Amazon mechanical turkers are unable to use linear model coefficients to diagnose model mistakes.

Attention: This apartment has an unusual combination of # Bedrooms and # Bathrooms.

```
<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># Bedrooms</td>
<td>1</td>
</tr>
<tr>
<td># Bathrooms</td>
<td>3</td>
</tr>
<tr>
<td>Square footage</td>
<td>726</td>
</tr>
<tr>
<td>Total rooms</td>
<td>4</td>
</tr>
<tr>
<td>Days on the market</td>
<td>17</td>
</tr>
<tr>
<td>Maintenance fee ($)</td>
<td>444</td>
</tr>
<tr>
<td>Subway distance (miles)</td>
<td>0.121</td>
</tr>
<tr>
<td>School distance (miles)</td>
<td>0.101</td>
</tr>
</tbody>
</table>
```

Model

- $\times 350,000$
- $\times 1000$
- $(\times -260,000)$

Model’s prediction $1,500,000$

Please take the unusual configuration of this apartment into consideration when making predictions.
Limitations

● Faithfulness/Fidelity
 ■ Some explanation methods do not ‘reflect’ the underlying model.

● Fragility
 ■ Post-hoc explanations can be easily manipulated.

● Stability
 ■ Slight changes to inputs can cause large changes in explanations.

● Useful in practice?
 ■ Unclear if a data scientist (ML engineer)/end-user can use explanations to isolate errors, improve ‘trust’ or simulate the model.
Tutorial on Post hoc Explanations

- **Approaches** for Post hoc Explainability
- **Evaluation** of Explanations
- **Limits** of Post hoc Explainability
- **Future** of Post hoc Explainability
Tutorial on Post hoc Explanations

- **Approaches** for Post hoc Explainability
- **Evaluation** of Explanations
- **Limits** of Post hoc Explainability
- **Future** of Post hoc Explainability
Future of Post hoc Explainability

Emerging Topics in Explainability Research
Future of Post hoc Explainability

Towards Better Post hoc Explanations
- Methods for More Reliable Post hoc Explanations
- Theoretical Analysis of Post hoc Explanation Methods
- Rigorous Evaluation of the Utility of Post hoc Explanations

Other Emerging Directions
- Post hoc Explainability Beyond Classification
- Intersections with Differential Privacy
- Intersections with Fairness
Future of Post hoc Explainability

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations

Theoretical Analysis of Post hoc Explanation Methods

Rigorous Evaluation of the Utility of Post hoc Explanations

Other Emerging Directions

Post hoc Explainability Beyond Classification

Intersections with Differential Privacy

Intersections with Fairness

Towards Better Post hoc Explanations

Methods for More Reliable Post hoc Explanations

Theoretical Analysis of Post hoc Explanation Methods

Rigorous Evaluation of the Utility of Post hoc Explanations

Other Emerging Directions

Post hoc Explainability Beyond Classification

Intersections with Differential Privacy

Intersections with Fairness
Methods for More Reliable Post hoc Explanations

Post hoc explanations have several limitations: not faithful to the underlying model, unstable, fragile

Identifying vulnerabilities in existing post hoc explanation methods and proposing approaches to address these vulnerabilities is a critical research direction going forward!
Future of Post hoc Explainability

Towards Better Post hoc Explanations

- Methods for More Reliable Post hoc Explanations
- Theoretical Analysis of Post hoc Explanation Methods
- Rigorous Evaluation of the Utility of Post hoc Explanations

Other Emerging Directions

- Post hoc Explainability Beyond Classification
- Intersections with Differential Privacy
- Intersections with Fairness
Theoretical Analysis of Post hoc Explanation Methods

- Theoretical analysis of LIME
 - Linear model
 - Data is tabular and discretized
 - Closed-form solution of the average coefficients of the "surrogate" model
 - Coefficients are proportional to the gradient of the function
 - Local error is bounded away from zero with high probability

[Garreau et. al., 2020]

Theoretical analysis shedding light on the fidelity, stability, and fragility of post hoc explanation methods can be extremely valuable to the progress of the field!
Future of Post hoc Explainability

Towards Better Post hoc Explanations
- Methods for More Reliable Post hoc Explanations
- Theoretical Analysis of Post hoc Explanation Methods
- Rigorous Evaluation of the Utility of Post hoc Explanations

Other Emerging Directions
- Post hoc Explainability Beyond Classification
- Intersections with Differential Privacy
- Intersections with Fairness
Rigorous Evaluation of the Utility of Post hoc Explanations

Rigorous user studies and evaluations to ascertain the utility of different post hoc explanation methods in various contexts is extremely critical for the progress of the field!

“Participants trusted the tools because of their visualizations and their public availability”
Future of Post hoc Explainability

Towards Better Post hoc Explanations
- Methods for More Reliable Post hoc Explanations
- Theoretical Analysis of Post hoc Explanation Methods
- Rigorous Evaluation of the Utility of Post hoc Explanations

Other Emerging Directions
- Post hoc Explainability Beyond Classification
- Intersections with Differential Privacy
- Intersections with Fairness
Tutorial on Post hoc Explanations

- **Approaches** for Post hoc Explainability
- **Evaluation** of Explanations
- **Limits** of Post hoc Explainability
- **Future** of Post hoc Explainability
Summary of Tutorial

Approaches for Post hoc Explainability

Evaluation of Explanations

Limits of Post hoc Explainability

Future of Post hoc Explainability
Parting Thoughts...

When introducing a new explanation method:

- Who are the target end users that the method will help?
- A clear statement about what capability and/or insight the method aims to provide to its end users
- Careful analysis and exposition of the limitations and vulnerabilities of the proposed method
- Rigorous user studies (preferably with actual end users) to evaluate if the method is achieving the desired effect
- Use quantitative metrics (and not anecdotal evidence) to make claims about explainability

[Leavitt and Morcos, 2020; Roth and Kearns, 2019]
Thank You!

Sameer Singh
UC Irvine
sameeersingh.org
sameer@uci.edu
@sameer_

Julius Adebayo
MIT

Hima Lakkaraju
Harvard University

Slides and Video: explainml-tutorial.github.io